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Introduction

Accurate computation of sensitivity derivatives is becoming an important item in Computational
Fluid Dynamics (CFD) because of recent emphasis on using nonlinear CFD methods in aerody-
namic design, optimization, stability and control related problems. Several techniques are avail-
able to compute gradients or sensitivity derivatives of desired flow quantities or cost functions
with respect to selected independent (design) variables. Perhaps the most common and oldest
method is to use straightforward finite-differences for the evaluation of sensitivity derivatives.
Although very simple, this method is prone to errors associated with choice of step sizes and can
be cumbersome for geometric variables. The cost per design variable for computing sensitivity
derivatives with central differencing is at least equal to the cost of three full analyses, but is usu-
ally much larger in practice due to difficulty in choosing step sizes. Another approach gaining
popularity is the use of Automatic Differentiation software (such as ADIFOR) to process the
source code, which in turn can be used to evaluate the sensitivity derivatives of preselected func-
tions with respect to chosen design variables. In principle, this approach is also very straightfor-
ward and quite promising. The main drawback is the large memory requirement because memory

use increases linearly with the number of design variables. ADIFOR software can also be cumber-



some for large CFD codes and has not yet reached a full maturity level for production codes, espe-

cially in parallel computing environments.

Another viable methodology for computing sensitivity derivatives is based on the adjoint
approach. This method has received a lot of publicity in recent years due to the pioneering work
of Jameson and colleagues, who had focused their attention primarily on inviscid flows [1]. A few
applications of this approach to Navier-Stokes equations have also become available in the last
couple of years [2-4]. The adjoint approach offers great savings and lower memory penalty for a
large number of design variables. The major disadvantage of this method is that a different set of
adjoint equations must be derived and solved for each different cost function. The overall process
of deriving the adjoint equations to achieve compatibility with the finite-difference equations and

the corresponding boundary conditions is tedious and time consuming.

An alternate approach, based on the use of complex variable expansions for computing sensitivity
derivatives, was suggested by Lyness [5] and Lyness and Moler [6]. For some unknown reasons,
such as the inability of compilers to deal effectively with complex arithmetic, this technique has
not been exploited much until Squire and Trapp [7] revived it. Anderson and colleagues [8] have
recently made use of complex variables to evaluate sensitivity derivatives with an unstructured-
grid Navier-Stokes flow solver. This technique is quite straightforward to apply and produces
accurate sensitivity derivatives without suffering from step size related numerical problems, as

has been demonstrated by Anderson et. al [8].

This paper discusses the application of complex variables for evaluation of sensitivity derivatives



used in conjunction with the multiblock Navier-Stokes code TLNS3D-MB [9]. Several examples
are presented to establish the accuracy and efficiency of this methodology. Some possible uses of
the resulting complex variable code are demonstrated, including the computation of force polars

and stability derivatives for aerodynamic problems of current interest.

Evaluation of Sensitivity Derivatives

The Taylor series expansion of a function can be written in terms of complex variables as follows:
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Separating the real and imaginary parts of this equation, we get
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Neglecting the higher order terms of the expansion, the gradient (first derivative) of the finction

with respect tx can be written as



df _ Im{ f(x+ ih)}

dx h

The second derivative can be expressed in terms of the real part of the function in a similar man-
ner. Notice that the first derivative or the sensitivity derivative given by the above equation in
terms of complex variables avoids the subtraction of nearly equal numbers, as opposed to the stan-
dard finite-differencing methods, and therefore does not exhibit the accuracy problems associated

with small step sizes.

Conversion Procedure for Complex Variables

The procedure for converting an existing Fortran computer code to complex variables is relatively
simple and straightforward. The computer code used in this exercise was the multiblock Navier-
Stokes code known as TLNS3D-MB [9]. It is a general purpose CFD code which can be used for
solving turbulent, viscous flows over complex configurations. This code uses a multigrid-based
Runge-Kutta time-stepping scheme to obtain steady-state solutions in an efficient manner. A
coarse-grain parallelism exploiting the multiblock data structure is incorporated in this code
which consists of over 110 subroutines in its latest version. The conversion procedure is summa-
rized in the following steps.

1. Insert the statement “Implicit Complex (a-h, 0-z)” immediately after

the program, subroutine or function statement in each Fortran module.
2. Create a module ccomplex.f, which contains the complex equivalent

of the intrinsic routines, such as max, min, abs, mod, dim, tanh,



atanh, cos, acos . . ..
3. In each program unit, replace reference to the above mentioned
routines with their complex counterparts; e.g. replace “max” with “ccmax”
(Note: ccmax and ccmin only support 2 arguments)
4. Replace “logical if” statements in the code involving floating
point variables in the following manner:
old: if(x.gt.y) then
new: if(real(x).gt.real(y)) then
(similar procedure for .ge., .lt. and .le. statements)
5. Modify the I/O statements so that read and write statements
correspond to correct data types.
6. In the MPI_SEND and MPI_RECV calls, replace the floating point variable
references by the corresponding complex variable references.

e.g., replace MPI_Double_Precision with MPI_Double_Complex.

Similar procedure could be applied to any other computer code. It may be necessary to take care
of specific intrinsic calls in a manner similar to the procedure described in step 2 to make these

calls compatible with complex arguments. Once the steps outlined above have been carried out,
and user-created bugs resolved, the code is almost ready to run. Another detail required is the
identification of independent (or design) variables. Say for example that we are interested in com-

puting the sensitivity derivatives with respect to the freestream Mach nuvhbEnen we need to

add a small imaginary componehj (o the variablévl in the beginning of the code, after the ini-

tial value ofM has been set. The derivative of any of the computed variables (including integrated



forces or cost functions) with respectNbis then given by the imaginary part of that variable

divided byh.

Although the complex variable approach for computing sensitivity derivatives offers many advan-
tages, it also has a few disadvantages. To start with, the complex version of the code requires
nearly double the memory of the original code and takes approximately 2.5 - 3 times more com-
puter time due to the complex arithmetic. In addition, because the conversion to complex vari-
ables requires human intervention, the complex variable approach raises the possibility of

introducing user-induced errors.

Results and Discussion

The first test case presented here is for inviscid, transonic flow over the RAE 2822 airfoil. The
baseline angle of attack was chosen as 6 degrees at a free stream Mach number of 0.75. A C-grid
consisting of 12% 49 points was used in these computations. The sensitivity derivatives with
respect to free stream Mach number were computed first by the standard finite-difference method.
Based on the numerical experimentation, a step size of 0.0001 in Mach number produced accurate
derivatives of force coefficient. When the complex variable approach was employed, very little
sensitivity was observed in the values of computed derivatives, and hence only the computations

with the smaller value of step size (0.00001) are reported here in Table 1.



Table 1: Sensitivity derivatives with Mach number for RAE 2822 Airfoil

ac, aCy aC,,
oM oM oM
Finite-dif- 0.65 1.16 -2.59
ference
(h=10.001)
Finite-dif- 0.3795 1.1099 -2.4101
ference
(h=10.0001)
Complex 0.34683 1.10412 -2.38873
Variables

Note that the sensitivity derivatives computed with the complex variable approach are much
closer to the finite-difference computations with smaller step size, as expected because the accu-
racy of finite-difference solutions improves with reduction in step size. Similar comparisons for
this case are shown for sensitivity derivatives with respect to the angle of attack in Table 2. The
step size used for the finite difference solutions was 0.0001 in order to reduce truncation error in
these solutions. The comparisons between these sensitivity derivative computations are quite
good. Based on the results so far, we believe that the complex variable method produces accurate
and reliable derivatives of force coefficients with respect to free stream Mach number and angle of

attack for inviscid transonic flow over the RAE 2822 airfoil.



Table 2: Sensitivity derivatives with angle of attack for RAE 2822 Airfoll

ac, aCy ac,,
da oa oa
Finite-Dif- 0.0993 0.03425 -0.0396
ference
Complex 0.09928 0.03421 -0.03958
Variables

Next we move to more complex flow and geometry and consider the viscous flow over a four-
block ONERA M6 wing configuration. The baseline test conditions were selected as follows:
Mach number of 0.84, angle of attack of 3.06, and a Reynolds number (based on mean aerody-
namic chord) of 11.7 million. The grid consisted of approximately 312,000 mesh points. The
Spalart-Allmaras turbulence model [10] was used in these computations. The sensitivity deriva-
tives with respect to both the angle of attack and freestream Mach number are presented in Table
3. The sensitivity derivatives computed with the complex variables method are in excellent agree-
ment with the finite difference solutions for this test case, verifying the applicability of the com-

plex variable approach to realistic, three-dimensional viscous, turbulent flows at transonic speeds.



Table 3: Sensitivity Derivatives for ONERA M6 Wing

ac, aCy o ac, aCy ac,,
da oa oa oM oM oM
Finite-Dif- 0.0761 0.0058 -0.0284 0.227 0.118 -0.16
ference
Complex 0.07610 0.00581 -0.02839 0.22731 0.1187p -0.15965
Variables

Having established the accuracy of the complex variable approach for computing the sensitivity
derivatives of integrated forces, we decided to investigate the possibility of using this approach for
reducing the cost of generating force coefficient polars over a range of test conditions. The proce-
dure is as follows. We generate a well converged baseline solution at a given angle of attack and
save this solution on a restart file. In order to compute the solution at a different angle of attack
(within 1 to 2 degrees of baseline), the baseline solution is read in from the restart file. The real

part of this solution is modified as follows:

Q(G) = Q(abaseline) + (a _abaseline)g_g

The above equation is applied to all of the flow variables, which provides a much better initial
guess at the new angle of attack. Consequently, the solution converges much more quickly (about
50 cycles instead of 300 cycles from cold start) to acceptable levels of convergence. This method

was employed to generate the lift curve over the entire angle of attack range shown in Figure 1,



starting with a baseline solution at 1.64 degrees for the NACA 0012 airfoil on a@®3rid.
Experimental data of Harris, modified with his angle of attack corrections [11] is shown for com-
parison. Although not shown, the solutions obtained in conventional manner (running about 300
cycles from freestream start) are indistinguishable from the computed solutions shown in this fig-

ure.
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Fig. 1: Lift curve for NACA 0012 AirfoM = 0.7,Re= 9 million

The final test case considered here represents an unconventional aircraft configuration known as
the Blended Wing Body (BWB) configuration, which is being evaluated as one of the advanced
concepts at NASA. This configuration has very peculiar stability characteristics in flight. At the
present time, the stability derivatives for such configurations are obtained primarily from experi-

mental data because conventional linear and inviscid based computational methods cannot accu-

10



rately predict these characteristics, especially under transonic flight conditions.

A grid consisting of 28% 65x 61 points, split evenly into 8 blocks, was used to model this con-
figuration. The Mach number of 0.85 and chord Reynolds number of 25 million were chosen for
the computations to correspond to an existing experimental data base [12]. The turbulence model

of Spalart and Allmaras chosen for these computations [10].

The CFD results for lift coefficient presented in Figure 2 are in excellent agreement with the
experimental data, and accurately capture the break in the lift curve slope at about 2.7 degrees
angle of attack. Similar correlation with the experimental data is also seen for the pitching
moment polar (Figure 3). It is our understanding that knowledge of the reversal in pitching
moment polar is crucial from a stability and control viewpoint, and the present CFD code is
shown to predict these trends accurately (Figure 3) for the BWB configuration examined in this

study.

11



O Exp. Data
A—A Present CFD

Cl

O L 1 L 1 L 1 L 1 L
0 1 2 3 4 5

Alpha (deg.)

Fig. 2: Lift coefficient comparisons for BWB configuratidrs 0.85,Re= 25 million
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Fig. 3: Pitching moment polar for BWB configuratdr; 0.85,Re= 25 million

The complex variable approach outlined in this paper can provide accurate values of stability

o . . ... dC aC :
derivatives at all the computational points. The varlatlonség‘f 5§“ﬁd with angle of attack are

shown in Figures 4 and 5 respectively, where a large change in the slope is observed at approxi-
mately 2.2 degrees angle of attack. It is also noted that the slope of the curve for pitching moment
derivative reverses sign at approximately 3.0 degrees angle of attack (Figure 5). Such information
would be very useful for control purposes, and is difficult to obtain by conventional finite-differ-
ence techniques due to the highly nonlinear nature of force coefficient polars for such configura-

tions. A large number of data points with very fine increments in angle of attack (or whatever the

13



chosen independent variable is) would be required in order to accurately compute the stability
derivatives, resulting in significant computational costs. On the other hand, experimental data is
also hard to generate with regular increments in test conditions and suffers from repeatability
issues. To illustrate this point, the derivatives obtained by finite-differencing of experimental data

are also plotted on these figures. The overall comparison is quite good except for large scatter in
the experimental data, which is possibly caused by the errors associated with repeatability of test
conditions. The proposed approach thus offers an efficient, accurate, and practical tool for such

applications.
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Fig. 4: Variation of lift-coefficient derivative with angle of attack

for BWB configuratidvh= 0.85,Re= 25 million
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Fig. 5: Variation of pitching moment derivative with angle of attack

for BWB configuratidvi;= 0.85,Re= 25 million
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Concluding Remarks

A convenient and straightforward procedure using complex variables has been outlined and dem-
onstrated for computing sensitivity derivatives in a multigrid-based multiblock Navier-Stokes
code. The accuracy and efficiency of this procedure has been demonstrated through various appli-
cations, including several two-dimensional airfoils, a three-dimensional wing, and an advanced
Blended Wing Body (BWB) configuration. The proposed method has also been demonstrated to
efficiently generate solutions over a large range of test conditions by providing a better starting
solution estimated through the use of sensitivity derivatives. For the BWB configuration, com-
puted lift and pitching moments were shown to be in excellent agreement with the experimental
data in the transonic flow regime. In addition, the computed stability derivatives indicated crucial
pitchup features more clearly than was observed from examination of force and moment curves

alone.
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